
An Overview of the VISIR Open Source Distribution 2007

REV 2007 - www.rev-conference.org 1

An Overview of the VISIR Open Source
Software Distribution 2007

J. Zackrisson, I. Gustavsson, L. Håkansson
Blekinge Institute of Technology/Department of Signal Processing, Ronneby, Sweden

Abstract—This paper is intended for people who are
interested in creating online laboratories. Blekinge Institute
of Technology (BTH) in Sweden has started a project known
as VISIR (Virtual Instrument Systems in Reality) together
with National Instruments in USA and Axiom EduTech in
Sweden to disseminate an online laboratory concept created
at BTH using open source technologies in collaboration with
other universities and organisations. The VISIR open source
distribution 2007 includes software for two implemented
examples, one laboratory for low frequency electronics and
one for signal processing. The distribution is modular and
many modules can be used for other online laboratories.
The goal is an international standard, enabling teams
worldwide to expand and jointly develop this powerful
approach into distributed online laboratories. Each
laboratory is a client/server application controlled by an
administrative system. These three parts are mainly written
in Adobe Flash, C++, and PHP respectively. However, the
hardware control module of the equipment server is written
in LabVIEW. This paper describes the organisation of the
software.

Index Terms—Electronics, online lab, remote lab, signal
processing, VISIR project, software development.

I. INTRODUCTION
Blekinge Institute of Technology (BTH) has started a

project known as VISIR (Virtual Instrument Systems in
Reality) together with National Instruments in USA and
Axiom EduTech in Sweden to disseminate an online
laboratory concept [1]. The concept involves adding a
remote operation option to traditional instructional
laboratories to make them more accessible, regardless of
whether the students are on campus or mainly off campus.
The BTH solution uses a unique interface enabling
students to recognise and be able to operate the equipment
found in the local laboratory. Two laboratory
environments have been implemented; one for electronics
experiments and one for signal processing, with the
emphasis on mechanical vibration. The goal of VISIR is
to further develop the current software and create
distributed online laboratories in collaboration with other
universities and organisations. This paper aims to give an
overview of the laboratory software system and the
interfaces between the components involved. Hopefully it
will show the flexibility of the system and how it can be
adopted to the suit other remote controlled experiment
laboratories. The fact that the experiment environment is
released as open source should help making this a
collaborative effort.

II. SOFTWARE ORGANIZATION
The software solution is divided in four distinct parts

(Fig. 1). A web interface handles administration, user
admission and resource scheduling. There is an
experiment client through which the users can control the
experiments. The measurement server is responsible for
handling the experiment requests from the experiment
clients. Finally, there is the equipment server, which is a
stand alone equipment controller, handling the low level
instrument interfaces. Because the system must function
in an education environment, external systems such as
Learning management systems (LMS) has to be
acknowledged and taken into account. This is viewed as
an external, but important, part of the system.

A. Web interface
The main purpose of the web interface is the

management of resources, keeping track of when and by
whom the laboratory is used, to guarantee service and
performance.

We use courses as a way to manage students: A course
has a start, an end and a limit for the number of registered
students. Administrators of the laboratory create it, and
therefore they can anticipate usage and allocate the
resources that may be needed.

The teachers are registered as responsible for the course
and handle all administrative tasks concerning the course,
such as registering students and making reservations for
the lab sessions. Only students registered to a course can
take part of the experiments in the course, but for
demonstration purposes, example courses are available for
people who want to try the functionality of the laboratory.

One of the basic ideas behind the laboratory is to
always be open for experiments if there are adequate
resources available. This becomes apparent when staring
an experiment. When the user chooses to do so, she/he can
start the experiment immediately if capacity is available,
i.e. if the laboratory isn't already in full use. To guarantee
time for experimentation the student can also make
reservations in advance.

1) Starting the experiment
A priority is assigned to the experiment session,
depending on a few conditions. Highest priority is given
to sessions reserved in advance. Then comes sessions
started without a reservation. Lowest priority is given to
sessions for demonstration experiments. If the laboratory
has available resources no prioritising has to be done,
otherwise the experiment sessions with higher priority
takes resources from those with lower priority. Thus,

An Overview of the VISIR Open Source Distribution 2007

REV 2007 - www.rev-conference.org 2

Figure 1. System modules and interfaces.

Figure 2. Oscilloscope displayed on the computer screen.

sessions with low priority are kicked out if the resources
are needed by, for example, a supervised lab session.
Information about the started experiment session is stored
in a database and is later used to for authentication in the
measurement server, better described below.

2) Controlling the experiment
When an experiment session is successfully started, the

system presents the means available for the
experimentation to the user; the experiment client
software. This is done though an HTML page containing
the experiment client as an embedded object. Parameters
to control the set-up of the experiment can be given to the
experiment client, for instance which instruments to
display or which components to show by default on the
breadboard. Teachers of the course can control these
parameters. The web interface itself adds some parameters
that can not be controlled e.g. which measurement server
to contact. Also, a special cookie parameter identifying the
started experiment session is given to the experiment
client, this is part of the authentication procedure,
described below.

3) Learning Management Systems
Worth noticing is that the web interface does not handle

typical Learning Management System (LMS) tasks.
Course material and planning etc. has to be handled by an
external LMS system. The reason behind this is that every
school or university has their own needs and probably
runs their own LMS systems already. To make it possible
to integrate our web interface into the LMS system, it is
possible to use http url:s linking to either courses or
experiments.

B. Experiment Client
A life like experiment environment has been developed,

containing an assortment of instruments. Each instrument
imitates an instrument usually found in a classic
laboratory, presenting all the usual functions of the
hardware instrument. Photographs of the instruments are
used to further improve the perception of the instrument as
being real (Fig. 2).

This means that students will get familiar with the
classic instruments by using the ones in the remote
laboratory. Each instrument is contained in its own
module (a separate .swf file), which can be loaded on
demand when the client starts. Which instruments to load
are decided by the parameters given to the experiment
client by the web interface. The modular approach has the
advantage of being very flexible when it comes to

An Overview of the VISIR Open Source Distribution 2007

REV 2007 - www.rev-conference.org 3

Instrument
Hardware

Breadboard

Flash
Instruments

Multimeter

Oscilloscope

Function
Generator

DC Power
Supply

Signal
Analyser

Experiment
Protocol Data

(XML)

Measurement
Server

Experiment
Protocol

Translation

Breadboard

Multimeter

Oscilloscope

Function
Generator

DC Power
Supply

Signal
Analyser

Figure 3. Instrument data transmitted from experiment client to hardware instruments.

changes. Instruments can change and new ones can be
introduced, without the need to change anything other
than the instrument module.

Current modules available are:
• A Breadboard for wiring circuits
• Function generator, HP 33120A
• Oscilloscope, Agilent 54622A
• Triple Output DC Power Supple, E3631A
• Digital Multi-meter, Fluke 23
• Signal Analyser, HP 35670A

1) Measurements
Performing measurements and viewing the results is, of

course, the most important part of the experiment client.
When a user makes a measurement, the experiment client
takes the settings from all the instrument modules and
compiles them into a measurement request (Fig. 3). This
request is subsequently sent to the measurement server,
which returns a response that can be read by the
instruments to update their displays. The measurement
request and response is transmitted using the experiment
protocol [2], an XML based protocol describing what
settings and functions each instrument type can perform,
independent of hardware manufacturer. This makes it
possible to implement new modules, for example
imitating an instrument that is not available in the current
instrument set.

Efforts for expanding the protocol, including new
instrument types and/or new instrument modules, can be
shared between projects.

C. Measurement server
The main responsibility of the measurement server is to

serve measurement requests, sent by the experiment
clients. These requests are encoded using the experiment

protocol, which contains the settings and functions of the
equipment used in the experiment.

Before these experiment requests can be served, they
are validated; looking for values outside what can be
performed or cases that may harm the hardware. The
requests then pass the timesharing system and in time the
request is handled. This leads to control commands being
sent to the equipment hardware and results being read
back. The results are then passed back to the client by the
experiment protocol.

1) Timesharing
As many clients as possible should be able to use the

laboratory at the same time. This is done by queuing all
simultaneous requests from the clients and performing
them sequentially, using a timesharing scheme. The
design goal is to serve requests from 16 simultaneous
clients within less than a second. This gives a maximum
1/16 of a second for each request and this has to be taken
into account when controlling the hardware.

The maximal number of clients allowed is controllable
by a configuration setting. (Because of how it is used,
timesharing is not possible when using the signal
analyser).

2) Authentication
Because of the limited resources, keeping track of valid
clients is important. Verifying the identity of the clients is
crucial, for example when keeping track of accounting
information. There might be problems concerning clients
that do not originate from our web interface that tries to
steal laboratory time.

This problem is solved by requiring clients connecting
to log-in using an experiment session cookie. This cookie
is generated by the web interface and stored in a database.
When the measurement server receives this log-in request
it validates the cookie against the same database as the

An Overview of the VISIR Open Source Distribution 2007

REV 2007 - www.rev-conference.org 4

web interface uses, and if valid, the client can start
experimenting.

3) Experiment protocol
The experiment protocol, previously mentioned, has

several advantages that the measurement server can take
advantage of. It provides an extra indirection when
dealing with low-level hardware instruments, making it
possible to provide an interface for controlling equipment
independent of manufacturer. Furthermore, because of its
design, new instrument types can be added and
implemented separately. Thus, making it simpler to
expand the kinds of hardware the measurement server can
control.

4) Direct or indirect control
Hardware control can be done in two ways. The first is

by using directly connected instruments, using a low level
interface. This is the case when controlling the spectrum
analyser, which uses GPIB to communicate.

Secondly, the measurement server can function as a
gateway for other kinds of instrument control, as is the
case with equipment servers. Equipment servers handle
low-level equipment and instrument interfaces and takes
commands sequentially over TCP/IP. This gateway
functionality can, if needed, be used for load balancing
between multiple equipment servers.

D. Equipment server
The equipment server in Fig. 1 is the server hosting the

instrument hardware for electronics experiments, plus a
relay switching matrix [1]. This server was earlier acting
as a stand-alone online electronics laboratory and it can
still be used for applications requiring no administrative
service. However, the corresponding old client software
supporting the equipment protocol is obsolete and not
included in the VISIR Open Source Distribution 2007. If
the equipment server is busy executing a request to
perform an experiment for a client in stand-alone mode
subsequent requests will be queued. The server software is
written in LabVIEW and the instrument drivers are IVI
(Interchangeable Virtual Instruments) compliant.

III. DEPLOYMENT
Setting up a new laboratory requires the operator to

have good knowledge in the fields where the laboratory
software operates. Good knowledge about web
applications and administration is crucial for the web
interface and experiment client. As for the measurement
and equipment servers, experience with instrument control
and electronics is needed.

A. Hardware set-up
The modular design of the system gives a substantial

freedom when it comes to hardware configuration.
The absolute minimum is a Microsoft Windows

machine containing the hardware instruments needed in
the laboratory. (PXI or PCI solutions are available). If
needed, an equipment server may be needed on this
machine to control the instruments. The interface between
equipment server and measurement server uses TCP/IP,
which enables the measurement server to be run on a
separate machine.

Running without the web interface requires that the
authentication is disabled (or that you provide your own).

Otherwise a machine capable of running a web server
supporting PHP and MySQL is required. This could be the
same machine again, but the laboratories at BTH run them
separately.

It should be possible to run the experiment on any
platform supporting Adobe Flash 8 [3].

Communication between experiment client and
measurement server is currently done by TCP/IP on port
2324, which has to be connectable through any firewall
solution used.

IV. DEVELOPMENT
All the software for the laboratory is available as open

source, encouraging others to use and to co-operate in the
development of the experiment laboratory.
Bug databases and project management information is
available on the projects web sites [4][5][6], as well as
technical documentation, such as instructions for getting
the latest source code from the subversion repositories.

A. Web interface
The web interface is written in PHP against a MySQL

database. Some kind of Linux or BSD system is, however,
preferable. But the software should be able to run and be
developed under other OS such as Windows or Mac OS.

B. Experiment client
The experiment client is written in Adobe Flash Pro 8,

but a newer version is already available and will be
adopted in a not too distant future. To a great extent the
source code is written in external ActionScript files to
simplify with the file versioning.

C. Measurement server
The measurement server is written for Microsoft

Windows, in C++ using Microsoft Visual C++.
Porting to other operating systems should be a minor

effort as the only real dependencies are on the network
socket layer. The software is continually developed. An
effort has been made to make it as easy as possible to add
new instruments and instrument control to the system. The
dynamic properties of the XML protocol help both
regarding that and for custom adoption if laboratories
have special needs. Hopefully others will adopt the same
protocol for their instrument control needs, either by using
our software or by developing their own.

V. FUTURE WORK
Because of the experiment protocol, the possibilities

exist of using other types of clients beside our experiment
client. This can allow other systems, for example web-
based scripts, to access the laboratory and display the
results as plain web pages. Other types of interfaces, such
as web services could be adopted, either as a standalone
service accessing the measurement server or as a module
in the measurement server.

REFERENCES
[1] I. Gustavsson et al., “An Instructional Electronics Laboratory

Opened for Remote Operation and Control", Proceedings of the
ICEE 2006 Conference, San Juan, Puerto Rico, July 23 - 28, 2006.

An Overview of the VISIR Open Source Distribution 2007

REV 2007 - www.rev-conference.org 5

[2] Experiment protocol,
http://svn.openlabs.bth.se/trac/measureserver/wiki/ClientProtocol,
2007.

[3] Adobe Flash system requirements,
http://www.adobe.com/products/flashplayer/productinfo/systemre
qs/, 2007.

[4] Web interface project page,
http://svn.openlabs.bth.se/trac/openlabsweb, 2007.

[5] Experiment client project page,
http://svn.openlabs.bth.se/trac/flash, 2007.

[6] Measurement server project page,
http://svn.openlabs.bth.se/trac/measureserver, 2007.

AUTHORS
J. Zackrisson is with Blekinge Institute of Technology,

Ronneby, Sweden (e-mail: johan.zackrisson@ bth.se).
I. Gustavsson is with Blekinge Institute of Technology,

Ronneby, Sweden (e-mail: ingvar.gustavsson@ bth.se).
L. Håkansson is with Blekinge Institute of

Technology, Ronneby, Sweden (e-mail: lars.hakansson@
bth.se).

This work was supported by National Instruments, Axiom EduTech,
BTH, and VINNOVA (Swedish Governmental Agency for Innovation
Systems).

